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This paper investigates the generalization performance of support vector classifiers for density level
detection (DLD) when the input term belongs to a separable Hilbert space. The estimate of learning rate
for DLD problem is established by Rademacher average and iterative techniques, which is independent of
the assumption of covering number used in the previous literature.
1. Introduction

A classification framework for density level detection (DLD)
problem has been proposed in [11] and its error analysis has been
well established in [10,6] based on the capacity assumption of
covering numbers. The theoretical result is important to better
understand the mathematical foundation of classification method
for DLD. It is well known that the Rademacher complexity has
been used successfully for mathematical analysis of machine
learning algorithms, see e.g., [2,3,20]. In this paper, we consider
establishing the generalization error analysis of the DLD problem
by combining the Rademacher complexity with the iterative
technique in [13,19,7].

Let us recall the background of the density level detection
problem in Hilbert spaces (see [11,10,6]). Let ðH; ∥ � ∥Þ be a separ-
able Hilbert space (possibly infinite dimensional) and let X⊂H with
∥x∥≤B for all x∈X. Let Q be an unknown data-generating distribu-
tion on X. One of the most common ways to define anomalies is by
saying that anomalies are not concentrated. A reference distribu-
tion μ on X is introduced to describe the concentration of Q.
Assume that Q has a density h with respect to μ, i.e. dQ ¼ h dμ.
Given ρ40, the set fx : hðxÞ4ρ; x∈Xg is called ρ-level set of density h.
To define anomalies in terms of the concentration one only has to
fix a threshold ρ40 so that a sample x∈X is considered to be
anomalous whenever hðxÞ≤ρ. The main task of the DLD problem is to
find ρ-level set fx : hðxÞ4ρ; x∈Xg. In this paper, we assume that
ll rights reserved.

).
fx : hðxÞ ¼ ρ; x∈Xg is a μ-zero set and hence it is also a Q-zero set (see
e.g., [9,17]).

Let S¼ fxigki ¼ 1 be a training set which is drawn independently
from Q. Given S, a DLD algorithm learns a function f S : X-R such
that the set fx : f SðxÞ40g is a good estimate of ρ-level set. For a
measurable function f : X-R the approximation performance is
measured (see [11]) by

Sμ;h;ρðf Þ≔μðff 40gΔfh4ρgÞ;

where Δ denotes the symmetric difference.
Unfortunately, there is no known method to estimate Sμ;h;ρðf Þ

from empirical data, and hence empirical comparison in terms of
Sμ;h;ρðf Þ is difficult. To overcome this difficulty, a novel performance
measure has been proposed in [11] by interpreting the DLD
problem as a binary classification problem. Let Y≔f−1;1g. The
measure is defined as below.

Definition 1. Let Q and μ be probability measures on X
and s∈ð0;1Þ. Then the probability measure Q⊖sμðAÞ on X� Y is
defined by

Q⊖sμðAÞ ¼ sEx∼Q IAðx;1Þ þ ð1−sÞEx∼μIAðx;−1Þ

for all measurable subsets A⊂X � Y . Here IA denotes the indicator
function of a set A.

From the definition we know that P≔Q⊖sμ can be associated
with a binary classification problem where positive samples are
drawn from Q and negative samples are drawn from μ.
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The misclassification risk for a measurable function f : X-R

and a distribution P on Z≔X � Y is defined by

RPðf Þ ¼ Pðfðx; yÞ : signðf ÞðxÞ≠ygÞ;
where sign t≔1 if t40 and sign t≔−1 otherwise.

It is well known that the Bayes classifier f c ¼ signð2Pðy¼ 1j�Þ−1Þ
minimizes the misclassification risk RPðf Þ. Moreover, for P≔Q⊖sμ
and s¼ 1=ð1þ ρÞ, f c ¼ Ifh4ρg−Ifh≤ρg.

As shown in [12], Sμ;h;ρðf Þ-0 if and only if RPðf Þ-RPðf cÞ.
Thus, the problem of DLD can be transformed into finding a
good function f such that RPðf Þ-RPðf cÞ. Based on the interpreta-
tion, a kernel-based method is introduced in [11] to realize
DLD.

Recall that K : X � X-R is a Mercer kernel if it is continuous,
symmetric, and positive semi-definite. The candidate reproducing
kernel Hilbert space (RKHS) HK associated with a Mercer kernel K
is defined as the closure of the linear span of the set of functions
fKx≔Kðx; �Þ : x∈Xg, equipped with the inner product 〈�; �〉K defined
by 〈Kx;Ky〉K ¼ Kðx; yÞ (see [1]). The reproducing property is given
by 〈Kx; f 〉K ¼ f ðxÞ for all x∈X and f∈HK .

For given positive labeled data Tþ ¼ fxigni ¼ 1 drawn indepen-
dently from Q, the empirical quantity

1
nð1þ ρÞ ∑

n

i ¼ 1
ð1−f ðxiÞÞþ þ ρ

1þ ρ
Ex′∼μð1þ f ðx′ÞÞþ:

is considered in [11]. As pointed out by Steinwart et al. in [11],
although the measure μ is known, the expectation Ex′∼μð1þ f ðx′ÞÞþ
can be numerically computed through finite evaluation of f on
T− ¼ fx′jgmj ¼ 1. Here T− ¼ fx′jgmj ¼ 1 are randomly drawn indepen-
dently according to μ. The empirical risk of f is defined as

ET ðf Þ ¼
1

nð1þ ρÞ ∑
n

i ¼ 1
ð1−f ðxiÞÞþ þ ρ

mð1þ ρÞ ∑
m

j ¼ 1
ð1þ f ðxj′ÞÞþ:

The following regularized algorithm has been proposed in [11]

f T ¼ arg min
f∈HK

fET ðf Þ þ λ∥f∥2Kg; ð1Þ

where λ40 is a regularization parameter.
Under the assumption on covering numbers, the convergence

of (1) is well understood in [10,6]. In this paper, inspired by
theoretical analysis in [3,5,7], we adopt the Rademacher average as
the capacity measure of hypothesis space. Dimension-free bound
of capacity can be derived in terms of the structural properties of
Rademacher average. Without the covering number assumption,
satisfactory learning rate is obtained by combining the Radema-
cher complexity with the iteration technique.

The rest of this paper is organized as follows. In Section 2, we
introduce the necessary definitions and present the main result on
learning rate. A detailed proof of the main result is provided in
Section 3.
2. Error analysis

To establish the relationship between Sμ;h;ρðf T Þ and the excess
risk RPðf T Þ−RPðf cÞ, we recall the following assumption [11,10].

Definition 2. Let μ be a distribution on X and let h : X-½0; ∞� be a
measurable function with

R
h dμ¼ 1, i.e. h is a density with respect

to μ. For ρ40 and 0≤q≤∞, we say h has ρ-exponent q if there exists
a constant c40 such that for all t40

μðfjh−ρj≤tgÞ≤ctq:

The assumption on h is closely related to the definition of
Tsybakov noise in [18] for binary classification. If h has ρ-exponent
q∈ð0; ∞�, Theorem 10 [11] shows that there exists a constant c40
such that

Sμ;h;ρðsignðf ÞÞ≤cðRPðf Þ−RPðf cÞÞq=ðqþ1Þ: ð2Þ
According to ET ðf Þ, we introduce the expected risk with a convex
loss

Eðf Þ ¼ 1
1þ ρ

Ex∼Q ð1−f ðxÞÞþ þ ρ

1þ ρ
Ex′∼μð1þ f ðx′ÞÞþ:

We know that for every measurable function f : X-R

RPðf Þ−RPðf cÞ≤Eðf Þ−Eðf cÞ ð3Þ
according to Theorem 2.1 in [21] or Theorem 9.21 in [8].

Define the data independent regularization function

f λ≔arg min
f∈HK

fEðf Þ þ λ∥f∥2K g: ð4Þ

From the definitions of fT in (1) and f λ in (4), we have

Eðf T Þ−Eðf cÞ≤Eðf T Þ−Eðf cÞ þ λ∥f T∥
2
K≤SðT ; λÞ þDðλÞ; ð5Þ

where the sample error

SðT ; λÞ ¼ fEðf T Þ−ET ðf T Þg þ fET ðf λÞ−Eðf λÞg
and the approximation error

DðλÞ ¼ Eðf λÞ−Eðf cÞ þ λ∥f λ∥
2
K :

The bounding technique for sample error SðT ; λÞ relies on
complexity measure of hypothesis function space HK . To derive a
dimension-free estimate, we introduce Rademacher complexity
[2] as the measure of capacity.

Definition 3. Let ϱ be a probability distribution on a set X and
suppose that x1;…; xm are independent samples selected accord-
ing to this distribution. Let F be a class of real-valued functions
defined on X. The empirical Rademacher average of F is defined by

R̂mðF Þ ¼ Es sup
f∈F

��� 1
m

∑
m

i ¼ 1
sif ðxiÞ

��� : x1;…; xm

( )
;

where s1;…; sm are independent uniform f71g-valued random
variables. The Rademacher complexity of F is RmðF Þ ¼ ER̂mðF Þ.

In this paper, we adopt the following condition for approxima-
tion error, which has been extensively used in the literature. See
e.g., [4,19,8,20,6].

Definition 4. We say the target function fc can be approximated
with exponent 0oβ≤1 in HK if there exists a constant cβ≥1, such
that

DðλÞ≤cβλβ; ∀λ40: ð6Þ

It is now a position to present our main result on learning rate.
The detailed proof will be given in the next section.

Theorem 1. Let ρ40. Let μ and Q be distributions on X such that Q
has a density h with respect to μ. For s¼ 1=ðρþ 1Þ we write
P ¼Q⊖sμ. Assume that h has ρ-exponent q and fc can be approxi-
mated with exponent β in HK . Then, for any 0oδo1, choosing
λ¼ ð1= ffiffiffiffiffi

m
p þ 1=

ffiffiffi
n

p Þ2=ðβþ1Þ, we have with confidence 1−δ

Sμ;h;ρðf T Þ≤C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

k0 þ 1
δ

� �s
1ffiffiffiffiffi
m

p þ 1ffiffiffi
n

p
� �qβ=ðβþ1Þðqþ1Þ−q=2k0 ðβþ1Þðqþ1Þ

;

where C is a constant independent of m;n; δ, and k0 is a constant
satisfying ð ffiffiffiffiffiffiffi

mn
p

=ð ffiffiffiffiffi
m

p þ ffiffiffi
n

p ÞÞ2β=ðβþ1Þ2kþ1 ¼OðkÞ.
From the result in Theorem 1, we know that the balance of

samples is crucial to reach the fast learning rate. In particular,
learning rate of fT can be close to Oðn−q=ð4qþ4ÞÞ when m¼OðnÞ and
β-1. It is worth noting that the presented convergence analysis is
independent of the assumption on covering numbers in [6].
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Now we give some comparisons on learning rates for any ϵ40
and m¼OðnÞ. It has been shown in [10] that if the density h has
both ρ-exponent q and geometric ρ-exponent α∈ð0; ∞Þ, then the
learning rates of f T is Oðn−qα=ð1þqÞð2αþ1ÞþϵÞ for αo ðqþ 2Þ=2q and
Oðn−2qα=ð2αð2þqÞþ3qþ4ÞþϵÞ otherwise. We can observe that our esti-
mate of learning rate is faster than Oðn−qα=ð1þqÞð2αþ1ÞþϵÞ when
αo ðqþ 2Þ=2q. In fact, by using the iterative technique, we can
also improve the previous estimates on generalization error in [6].

Along the line of the present work, further research direction
may establish the generalization estimate of the DLD problemwith
non-i.i.d samples [14,15] and with different analysis techniques
[13,16].
3. Proof of Theorem 1

We introduce some properties of Rademacher complexity (see
[2]) which are used in the sample error estimation.

Lemma 1. Let G;G1;G2 be the classes of real functions. Then
(1)
 RmðjGjÞ≤RmðGÞ where jGj ¼ fjf j : f∈Gg.

(2)
 RmðG1⊕G2Þ≤RmðG1Þ þRmðG2Þ where G1⊕G2 ¼ fg1 þ g2 : ðg1; g2Þ

∈G1 � G2g.

(3)
 If ϕ : R-R is Lipschitz with constant Lϕ and satisfies ϕð0Þ ¼ 0,

then Rmðjϕ○GjÞ≤2LϕRmðGÞ.
Now we give the estimate of Rademacher complexity for
hypothesis function spaces in RKHS. The analysis technique used
here is the same as Lemma 2.1 in [5]. We recall the key steps of
proof for completeness.

Lemma 2. Define F r ¼ ff∈HK : ∥f ∥K≤rg and κ≔supx∈X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx; xÞ

p
.

Then, RnðF rÞ≤rκ=
ffiffiffi
n

p
.

Proof. Based on the reproducing property of f∈F r , we have

RnðF rÞ ¼ EEs sup
f∈F r

���1
n

∑
n

i ¼ 1
si〈f ;Kxi 〉

��� : x1;…; xn

 !

≤rEEs

 
‖1
n

∑
n

i ¼ 1
siKxi‖ : x1;…; xn

!�����
¼ r

n
EEs ∑

n

i;j ¼ 1
sisjKðxi; xjÞ

 !1=2

: x1;…; xn

2
4

3
5

≤
r
n
E ∑

n

i ¼ 1
Kðxi; xiÞ

 !1=2

≤
rκffiffiffi
n

p : □

Note that for all f∈F r ,

Eðf Þ−ET ðf Þ
�� ��≤ 1

1þ ρ
jEx∼Q ð1−f ðxÞÞþ−ETþ ðf Þj

þ ρ

1þ ρ
Ex′∼μð1þ f ðx′ÞÞþ−ET− ðf Þ ;j
�� ð7Þ

where ETþ ðf Þ ¼ ð1=nÞ∑n
i ¼ 1ð1−f ðxiÞÞþ and ET− ðf Þ ¼ ð1=mÞ∑m

j ¼ 1ð1þ
f ðx′jÞÞþ.

Now we turn to consider the two terms on the right side based
on Rademacher average technique. The upper bound of sample
error is presented as below.
Proposition 1. For any f∈F r , with probability at least 1−δ, there
holds

Eðf Þ−ET ðf Þ
�� ��≤ 2κr þ 4þ κr

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

2
δ

r !

1
ð1þ ρÞ ffiffiffiffiffi

m
p þ ρ

ð1þ ρÞ ffiffiffi
n

p
� �

:

Proof. For each f∈F r , we have ∥f ∥∞≤κ∥f ∥K≤κr. Let ~T
þ
be the same

copy Tþ with kth sample replaced by sample ~xk. Then���sup
f∈F r

jEx∼Q ð1−f ðxÞÞþ−ETþ ðf Þj−sup
f∈F r

�����Ex∼Q ð1−f ðxÞÞþ−E ~T
þ ðf Þj

���
≤sup
f∈F r

ETþ ðf Þ−E ~T
þ ðf Þ ¼ 1

n
sup
f∈F r

ð1−f ðxkÞÞþ−ð1−f ð ~xkÞÞþj
�������

�����
≤
1
n
sup
f∈F r

f ðxkÞ−f ð ~xkÞ ≤
2κr
n

:

����
����

McDiarmid's inequality implies that with probability at least 1−δ=2

sup
f∈F r

Ex∼Q ð1−f ðxÞÞþ−ETþ ðf Þ
�� ��≤E sup

f∈F r

jEx∼Q ð1−f ðxÞÞþ−ETþ ðf Þj

þ κr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2=δÞ

n

r
: ð8Þ

Denote ϕðf ðxÞÞ ¼ ð1−f ðxÞÞþ−1. By the standard symmetrization
arguments [2] and Lemma 1,

E sup
f∈F r

Ex∼Q ð1−f ðxÞÞþ−ETþ ðf Þ
�� ��
¼ E sup

f∈F r

Ex∼Qϕðf ðxÞÞ−
1
n

∑
n

i ¼ 1
ϕðf ðxiÞÞj

����
≤2E sup

f∈F r

���1
n

∑
n

i ¼ 1
siϕðf ðxiÞÞ

���
≤2E sup

f∈F r

���1
n

∑
n

i ¼ 1
sif ðxiÞ

���þ 4E sup
f∈F r

���1
n

∑
n

i ¼ 1
si
���

≤2RnðF rÞ þ 4ffiffiffi
n

p : ð9Þ

By combining (8) and (9), and Lemma 2, we have with prob-
ability at least 1−δ=2

sup
f∈F r

Ex∼Q ð1−f ðxÞÞþ−ETþ ðf Þ
�� ��≤ð4þ 2κr þ κr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2=δÞ

q
Þ 1ffiffiffi

n
p : ð10Þ

With the same fashion as above, we also have that

sup
f∈F r

Ex′∼μð1þ f ðx′ÞÞþ−ET− ðf Þ
�� ��≤ð4þ 2κr þ κr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2=δÞ

q
Þ 1ffiffiffiffiffi

m
p

holds with probability at least 1−δ=2. The desired result follows by
combining (7) with (10). □

For R41, we denote

WðRÞ≔fT ¼ ðTþ; T−Þ : Tþ∈Xn; T−∈Xm; ∥f T∥K≤Rg:
Also, we denote

ΩT ¼ Eðf T Þ−Eðf cÞ þ λ∥f T∥
2
K :

Lemma 3. Denote VR ¼ ðVþ
R ;V

−
RÞ, where Vþ

R ∈X
n;V−

R∈X
m. For all t40,

there exists a set VR with PðVRÞ≤4e−t such that, for all WðRÞ\VR

ΩT≤ 4κ Rþ
ffiffiffiffiffiffiffiffiffi
DðλÞ
λ

r !
þ 8þ 2κ

ffiffi
t

p
Rþ

ffiffiffiffiffiffiffiffiffi
DðλÞ
λ

r ! !
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1
ð1þ ρÞ ffiffiffiffiffi

m
p þ ρ

ð1þ ρÞ ffiffiffi
n

p
� �

þ DðλÞ:

Proof. By the definitions of f λ and DðλÞ, we get ∥f λ∥K≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðλÞ=λ

p
.

From Proposition 1, we have with confidence 1−δ

Eðf λÞ−ET ðf λÞ
�� ��≤ 2κ

ffiffiffiffiffiffiffiffiffi
DðλÞ
λ

r
þ 4þ 2κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðλÞ ln 2

δ

� �
λ

vuuut
0
BBBB@

1
CCCCA

1
ð1þ ρÞ ffiffiffiffiffi

m
p þ ρ

ð1þ ρÞ ffiffiffi
n

p
� �

:

For T∈WðRÞ, with confidence 1−δ

Eðf T Þ−ET ðf T Þ
�� ��≤ 2κRþ 4þ 2κR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln

2
δ

� �s !

1
ð1þ ρÞ ffiffiffiffiffi

m
p þ ρ

ð1þ ρÞ ffiffiffi
n

p
� �

:

From (5), we have with confidence 1−δ

ΩT≤ 2κ Rþ
ffiffiffiffiffiffiffiffiffi
DðλÞ
λ

r !
þ 8þ 2κ

ffiffi
t

p
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2DðλÞ ln 4

δ

� �
λ

vuuut
0
BBBB@

1
CCCCA

0
BBBB@

1
CCCCA

1
ð1þ ρÞ ffiffiffiffiffi

m
p þ ρ

ð1þ ρÞ ffiffiffi
n

p
� �

þ DðλÞ:

Setting t ¼ lnð4=δÞ, we have δ¼ 4e−t . Then, there exists a set VR

with PðVRÞ≤4e−t such that, for all WðRÞ\VR, the desired inequality in
Lemma 3 holds true. □

From the condition of Lemma 3, we also need an R such that
WðRÞ contains all Tþ∈Xn; T−∈Xm. By the definition of fT, we get
∥f T∥K≤1=

ffiffiffi
λ

p
. Hence, T⊂Wð1=

ffiffiffi
λ

p
Þ for each T. In order to improve the

estimate of learning rate, we shall consider an iteration technique
used in [13,19,7]. We can also prove that ∥f ∥K can be bounded byffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðλÞ=λ

p
with high confidence.

Now, we are in a position to prove the main result in Theorem 1.

Proof of Theorem 1. Let t≥1. Based on Lemma 3 and (6), we know
that there exists a set VR, with a probability at most e−t , such that
for every T∈WðRÞ\VR,

ΩT≤~c1
ffiffi
t

p
ðRþ λðβ−1Þ=2Þ 1ffiffiffiffiffi

m
p þ 1ffiffiffi

n
p

� �
þ λβ

� �
; ð11Þ

where ~c1 is a constant independent of m;n, and t. Choose
λ¼ ð1= ffiffiffiffiffi

m
p þ 1=

ffiffiffi
n

p Þ2=ðβþ1Þ. Then, we can easily check that
λðβ−1Þ=2ð1= ffiffiffiffiffi

m
p þ 1=

ffiffiffi
n

p Þ¼ λβ . Thus, (11) implies that

ΩT≤~c1
ffiffi
t

p
R

1ffiffiffiffiffi
m

p þ 1ffiffiffi
n

p
� �

þ 2~c1
ffiffi
t

p
λβ≤~c1

ffiffi
t

p
Rλðβþ1Þ=2 þ 2~c1

ffiffi
t

p
λβ: ð12Þ

Since ∥f T∥K≤
ffiffiffiffiffiffiffiffiffiffiffi
ΩT=λ

p
, by using (12) iteratively, we can find a small

ball F R that contains f z;λ with high confidence. Starting with
R¼ Rð0Þ ¼ 1=

ffiffiffi
λ

p
, by (12) we know that each T∈WðRð0ÞÞD WðRð1ÞÞ∪

VRð0Þ , where

Rð1Þ ¼ ~c1
ffiffi
t

p
λðβ−2Þ=4 þ 2~c1

ffiffi
t

p
λðβ−1Þ=2:

Based on (12), we iteratively derive

WðRð0ÞÞDWðRð1ÞÞ∪VRð0Þ D⋯DWðRðkÞÞ∪ ⋃
k−1

j ¼ 0
VRðjÞ

 !
;

where each VRðjÞ has a probability at most e−t and RðkÞ is given by

RðkÞ ¼ ~c1
ffiffi
t

p
λðβ−1Þ=2−ðβ=2

kþ1Þ

þ 2k~c1
ffiffi
t

p
λðβ−1Þ=2≤2~c1

ffiffi
t

p
λðβ−1Þ=2ðλ−β=2kþ1 þ kÞ:
Choosing a constant k0 such that λ−β=2
kþ1 ¼OðkÞ, we get for T∈WðRðk0ÞÞ

∥f T∥K≤4~c1
ffiffi
t

p
λððβ−1Þ=2Þ−ðβ=2

kþ1Þ:

Together with (11) and taking t ¼ lnðk0 þ 1=δÞ, we have with a
probability at most 1−δ

Eðf T Þ−Eðf cÞ≤C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

k0 þ 1
δ

� �s �
1ffiffiffiffiffi
m

p þ 1ffiffiffi
n

p
�ðβ=ðβþ1ÞÞ−ð1=2k0 ðβþ1ÞÞ

:

Connecting this inequality with (2) and (3) derives the desired
result. □
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